Convergence Analysis of a Stochastic Projection-free Algorithm
نویسندگان
چکیده
In this paper, the online variants of the classical Frank-Wolfe algorithm are considered. We consider minimizing the regret with a stochastic cost. The online algorithms only require simple iterative updates and a non-adaptive step size rule, in contrast to the hybrid schemes commonly considered in the literature. Several new results are derived for convex and non-convex losses. With a strongly convex stochastic cost and when the optimal solution lies in the interior of the constraint set or the constraint set is a polytope, the regret bound and anytime optimality are shown to be O(log T/T ) and O(log T/T ), respectively, where T is the number of rounds played. These results are based on an improved analysis on the stochastic Frank-Wolfe algorithms. Moreover, the online algorithms are shown to converge even when the loss is non-convex, i.e., the algorithms find a stationary point to the time-varying/stochastic loss at a rate of O( √ 1/T ). Numerical experiments on realistic data sets are presented to support our theoretical claims.
منابع مشابه
An Improved Spsa Algorithm for Stochastic Optimization with Bound Constraints
We show that the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm with projection may exhibit slow convergence in constrained stochastic optimization problems when the optimum is situated on the constraints. The cause of the slow convergence is a geometric interaction between the projection operator and the SPSA gradient estimate. The effect of this interaction can be describ...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملConditional Accelerated Lazy Stochastic Gradient Descent
In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate O( 1 ε2 ) improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate O( 1 ε4 ).
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.01171 شماره
صفحات -
تاریخ انتشار 2015